
0

AD-A286 056

User Interface Software Tools

Brad A. Myers

August 1994 ' 3

1 94-347951111111 11 illluilllIll~~ll liiililillil11 lI~

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Also appears as Human-Computer Interaction Institute Technical Report A

CMU-HCII-94-107

This report supersedes CMU-CS-92-114 from February, 1992, published as:
Brad A. Myers. "State of the Art in User Interface Software Tools," Advances in Human-

Computer Interaction, Volume 4. Edited by H. Rex Hartson and Deborah Hix. Norwood,
NJ: Ablex Publishing, 1993. pp. 110-150.

Abstract

Almost as long as there have been user interfaces, there have been special software systems and tools to-
help design and implement the user interface software. Many of these tools have demonstrated significant
productivity gains for programmers, and have become important commercial products. Others have
proven less successful at supporting the kinds of user interfaces people want to build. This article
discusses the different kinds of user interface software tools, and investigates why some approaches have
worked and others have not. Many examples of commercial and research systems are included. Finally,
current research directions and open issues in the field are discussed.

This research was sponsored by NCCOSC under Contract No. N66(X)I-94-C-6037, ARPA Order No.
B326. The views and conclusions contained in this document arc those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of NCCOSC or the U.S.
Government.

A pI4 umI

;on For

I CR &II
"FAB

dy

-- -- -...........

Av -)bihity Codes

Avaii ahd/orL::t Specal

CR CATEGORIES AND SUBJECT DESCRIPTORS: D.2.2 [Software Engineering]: Tools and
Techniques-User Interfaces; H.1.2 [Models and Principles]: User/Machine Systems-Human
Factors; H.5.2 [Information Interfaces and Presentation]: User Interfaces-User Interface
Management Systems; 1.2.2 [Artificial Intelligence]: Automatic Programming-Program
Synthesis;

ADDITIONAL KEYWORDS AND PHRASES: User Interface Software, Toolkits, Interface Builders.
User Interface Development Environments.

User Interface Software T(x)ls -

1. Introduction
User interface software is often large, complex and difficuft to implement, debug, and modify. One

study found that an average of 48% of the code of applications is dcvoted to the user interface, and that

about 50% of the implementation time is devoted to implementing the user interlace portion 1571. As

interfaces become easier to use. they become harder to create 1641. Today. direct manipulation interfaces

(also called fGois" for Graphical User Interfacesi are almost univeral. one I 'A; , tudN lound that 97'1

of all software development on Vnx involed a (Gli 12h. p 9O0 'hMew mntertaces require that the

programmer deal with elaborate graphics. multiple way% for giving the same command. multiple

asynchronous input devices iusuallN a keyboard and a locator or po)inting device such a.s a mouse). a

'mode ree' interlace where the user can give any command at vi•ruallv an% time, and rapid '"smantic

feedbaLk" where determining the appropnate response to user actions requires specialized inlorrnaton

about the objetoc in the program Tomorrow's user interlaces will provide speech and gesture

recognition, intelligern agents and integrated multi-media, and will probably be even more dilficult to

create. Furthermore, because user interface design is so difficult, the only reliable way to get good

interfaces is to iteratively m-design (and therefore re-implement) the interfaces after user-testing, which

makes the implementation task even harder.

Fortunately, there has been significant progress in software tools to help with creating user interfaces,

and today, virtually all user interface software is created using tools that make the implementation easier.

For example, the MacApp system from Apple has been reported to reduce development time by a factor

of four or five [921. A study commissioned by NeXT claims that the average application programmed

using the NeXTStep environment wrote 83% fewer lines of code and took one-half the time compared to

applications written using less advanced tools, and some applications were completed in one-tenth the

time [7].

Furthermore, user interface tools are a major business. In the Unix market alone, over US$133 million

of tools were sold in 1993, which is about 50,000 licenses [126]. This is a 64% increase over 1992.

Forrester Research claims that the total market for UI software tools on all platforms, including "vertical

tools" which include database and user interface construction tools, will be 130,000 developers

generating US$400 million in revenue. They estimate that this will double each year, growing to 700,000

developers and $1.2 billion by 1996 [161.

Mark Hanner from the Meta Group market research firm says that the user interface tool market is

about to explode [241. Whereas the "first generation" of commercial tools were not fully graphical or

were not sufficiently powerful, this is no longer true for today's tools. Furthermore, prices for tools have

dropped significantly, and fees for run-times have been mostly eliminated (so that designers do not have

to pay the tool creator for products created using the tools). For the future, there is still a tremendous

User Interface Software Tools -2

opportunity for good tools, espec 1 niche areas like multimedia, distributed systems, and

geographical information systems.

This article surveys user interface software tools, aniu explains the different types and classifications.

There have been many previous surveys on this topic [49, 251, but since this is a fast-changing field, a

new one seemed in order. In addition, this article takes a broader approach and includes more

components of user interface software, includino windowing systems. However, it is now impossible to

discuss all user interface tools, since there are so many.' For example, there are over lI() commercial

graptucal user interface builders, and many new research tools ;.re reported every ýcar at conferences like

the annual ACM User Interface Software and Technolog, - "oosium (UISTI and the ACM SIGCHII

conference. There are also about three PhD theses on L, .. Ace tools every year. Therelore, this

article provides an overview of the most popular approaches, ra..er ti-in an exhaustive survey.

2. Definitions
The user interface (UI) of a computer program is the part that handles the output to the displz N and the

input from the person using the program. The rest of the program is called the applhcatvu: or the

application semantics.

User interface tools have been called various names over the year%, with the most popular tving User

Interface Management Systems (UIMS) [751. However, many people feel that the term UIMS should be

used only for tools that handle the sequencing of operations (what happens after each event from the

user), so other terms like Toolkits, User Interface Development Environments. Interface Builders,

Interface Development Tools, and Application Frameworks have been used. This paper will try to define

these terms more specifically, and use the general term "user interface tool" for all software aimed to

help create user interfaces. Note that the word "tool" is being used to include what are called

"toolkits," as well as higher-level tools, such as Interface Builders, that are not toolkits.

Four different classes of people are involved with user interface software, and it is important to have

different names foi them to avoid confusion. The first is the person using the resulting program, who is

called the end user or just user. The next person creates the user interface of the program, and is called the

user interface designer or just designer. Working with the user interface designer will be the person who

writes the software for the rest of the application. This person is called the application programmer. The

designer may use special user interface tools which are provided to help create user interfaces. These

tools are created by the tool creator. Note that the designer will be a user of the software created by the

'A partial list which is frequently updated is available through Mosaic or other world-widc-web interfaces as
http://www.cs.cmu.edu:8001/afs/cs.cmu.edu/user/bam/www/toolnames.html

User Interface Software Tools -3

tool creator, but we still do not use the term "user" here to avoid confusion with the end user. Although

this classification discusses each role as a different person, in fact, there may be many people in each role

or one person may perform multiple roles. The general term programmer is used for anyone who writes

code, and may be a designer, application programmer, or tool creator.

3. Importance of User Interface Tools
There are many advantages to using user interface software tools. These can be classified into two

main groups:
" The quality of the interfaces will be higher. This is because:

"* Designs can be rapidly prototyped and implemented, possibly even before the
application code is written.

"* It is easier to incorporate changes discovered through user testing.

"* There can be multiple user interfaces for the same application.

"* More effort can be expended on the tool than may be practical on any single user
interface since the tool will be used with many different applications.

"* Different applications are more likely to have consistent user interfaces if they are
created using the same user interface tool.

"* It will be easier for a variety of specialists to be involved in designing the user
interface, rather than having the user interface created entirely by programmers.
Graphic artists, cognitive psychologists, and human factors specialists may all be
involved. In partitular, professional user interface designers, who may not be
programmers, can be in charge of the overall design.

"* The user interface code will be easier and more economical to create and maintain.
This is because:

"* Interface specifications can be represented, validated, and evaluated more easily.

"* There will be less code to write, because much is supplied by the tools.

"* There will be better modularization due to the separation of the user interface
component from the application. This should allow the user interface to change
without affecting the application, and a large class of changes to the application (such
as changing the internal algorithms) should be possible without affecting the user
interface.

"* The level of programming expertise of the interface designers and implementors can be
lower, because the tools hide much of the complexities of the underlying system.

- The reliability of the user interface will be higher, since the code for the user interface
is created automatically from a higher level specification.

* It will be easier to port an application to different hardware and software environments
since the device dependencies are isolated in the user interface tool.

Based on these goals for user interface software tools, we can list a number of important functions that

should be provided. This list can be used to evaluate the various tools to see how much they cover.

Naturally, no tool will help with everything, and different user interface designers may put different

User Interface Software Tools -4

emphasis on the different features.

In general, the tools might:
"* help design the interface given a specification of the end users' tasks,
"* help implement the interface given a specification of the design,
"* help evaluate the interface after it is designed and propose improvements, or at least provide

information to allow the designer to evaluate the interface,
"* create easy-to-use interfaces,
"* allow the aesigner to rapidly investigate different designs,
"* allow non-programmers to design and implement user interfaces,
"* allow the end user to customize the interface,
"* provide portability, and
"* be easy to use themselves.

This might be achieved by having the tools:
"* automatically choose which user interface styles, input devices, widgets, etc. should be used,
"• help with screen layout and graphic design,
"* validate user inputs,
"* handle user errors,
"* handle aborting and undoing of operations,
"* provide appropriate feedback to show that inputs have been received,
"* provide help and prompts,
"* update the screen display when application data changes,
"* notify the application when the user updates application data,
"* deal with field scrolling and editing,
"* help with the sequencing of operations.
* insulate the application from all device dependencies and the underlying software and

hardware systems,
"* provide customization facilities to end users, and
"* evaluate the graphic design and layout, usability, and learnability of the interface.

4. Overview of User Interface Software Tools
Since user interface software is so difficult to create, it is not surprising that people have been working

for a long time to create tools to help with it. Today, many of these tools and ideas have progressed from

research into commercial systems. and their effectiveness has been amply demonstrated. Research

systems also continue to evolve quickly, and the models that were popular five years ago have been made

obsolete by more effective tools, changes in the computer market (e.g., the demise of OpenLook will take

with it a number of tools), and the emergence of new styles of user interfaces such as pen-based

computing and multi-media.

User trnterface Software Tools -5

4.1 Components of User Interface Software
As shown in Figure 1, user interface software may be divided into various layers: the windowing

system, the toolkit and higher-level tools. Of course, many practical systems span multiple layers.

Higher-level Tools

Toolkit

Windowing System
Operating System

Figure 1: The components of user interface software discussed in this article.

The windowing system supports the separation of the screen into different (usually rectangular) regions.

called windows. The X system [911 divides the window functionality into two layers: the window syvsrtem.

which is the functional or programming interface, and the window manager which is the user interface.

Thus the "window system" provides procedures that allow the application to draw pictures on the screen

and get input from the user, and the "window manager" allows the end user to move windows around,

and is responsible for displaying the title lines, borders and icons around the windows. However, many

people and systems use the name "window manager" to refer to both layers, since systems such as the

Macintosh and Microsoft Windows do not separate them. This article will use the X terminology, and use

the term "windowing system" when referring to both layers.

On top of the windowing system is the toolkit, which contains many commonly used widgets such as

menus, buttons, scroll bars, and text input fields. On top of the toolkit might be higher-level tools, which

help the designer use the toolkit widgets. The following sections discuss each of these components in

more detail.

' User Interface Software Tools -6

5. Windowing Systems
A windowing system is a software package that helps the user monitor and control different contexts by

separating them physically onto different parts of one or more display screens. A survey of various

windowing systems was published earlier [471. Although most of today's systems provide toolkits on top

of the windowing systems, as will be explained below, toolkits generally only address the drawing of

widgets such as buttons, menus and scroll bars. Thus, when the programmer wants to draw application-

specific parts of the interface and allow the user to manipulate these, the window system interface must be

used directly. Therefore, the windowing system's programming interface has significant impact on most

user interface programmers.

The first windowing systems were implemented as part of a single program or system. For example,

the EMACs text editor [100], and the Smalltalk [1121 and DLISP [11 1 programming environments had

their own windowing systems. Later systems implemented the windowing system as an integral part of

the operating system, such as Sapphire for PERQs [45], SunView for Suns [1061, and the Macintosh,

NeXT and Microsoft Windows systems. In order to allow different windowing systems to operate on the

same operating system, some windowing systems, such as X and Sun's NeWS, operate as a separate

process, and use the operating system's inter-process communication mechanism to connect to

applications.

5.1 Structure of Windowing Systems
A windowing system can be logically divided into two layers, each of which has two parts (see Figure

2). The window system, or base layer, implements the basic functionality of the windowing system. The

two parts of this layer handle the display of graphics in windows (the output model) and the access to the

various input devices (the input model), which usually includes a keyboard and a pointing device such as

a mouse. The primary interfaLe of the base layer is procedural, and is called the windowing system's

application or program interface.

The other layer of windowing system is the window manager or user interface. This includes all

aspects that are visible to the user. The two parts of the user interface layer are the presentation, which is

comprised of the pictures that the window manager displays, and the commanfdv, which are how the user

manipulates the windows and their contents.

5.2 Base Layer

The base layer is the procedural interface to the windowing system. In the 1970s and early 1980s, there

were a large number of different windowing systems, each with a different procedural interface (at least

one for each hardware platform). People writing software found this to be unacceptable because they

User Interface Software Tools -7

User Interface Layer I Presentation Commands I Window Manager

Base Layer IOutput Model Input Model I Window System+

Figure 2: The windowing system can be divided into two layers, called the base or window system
layer, and the user interface or window manager layer. Each of these can be divided into
parts thot handle output and input.

wanted to be able to run their software on different platforms, but they would have to rewrite significant

amounts of code to convert from one window system to another. The X windowing system [911 was

created to solve this problem by providing a hardware-independent interface to windows. X has been

quite successful at this, and has driven virtually all other windowing systems out of the workstation

hardware market. In the small computer market, the Macintosh runs its own window system or X, and

IBM PC-class machines primarily run Microsoft Windows or IBM's Presentation Manager (part of OS/2).

5.2.1 Output Model

The output model is the set of procedures that an application can use to draw pictures on the screen. It

is important that all output be directed through the window system so that the graphics primitives can be

clipped to the window's borders. For exa.iple, if a program draws a line that would extend out of a

window's borders, it must be clipped so that the contents of other, independent, windows are not

overwritten. Most windowing systems provide special escapes that allow programs to draw directly to the

screen, without using the window system's clipping. These operations can be much quicker, but are very

dangerous and therefore should seldom be used. Most modem computers provide graphics hardware that

is specially optimized to work efficiently with the window system.

In early windowing systems, such as Smalltalk [1121, Blit 1851 and Sapphire 1461, the primary output

operation was BitBlt (also called "RasterOp"). These systems primarily supported monochrome screens

(each pixel is either black or white). BitBIt takes a rectangle of pixels from one part of the screen and

copies it to another part. Various boolean operations can be specified for combining the pixel values of

the source and destination rectangles. For example, the source rectangle can simply replace the

destination, or it might be XORed with the destination. BitBIt can be used to draw solid rectangles in

either black or white, display text, scroll windows, and perform many other effects [351. The only

User Interface Software Tools -

additional drawing operation typically supported by these early systems was drawing straight lines.

Later windowing systems, such as the Macintosh and X, added a full set of drawing operations, such as

filled and unfilled polygons, text, lines, arcs, etc. These cannot be implemented using the BitBit operator.

With the growing popularity of color screens and non-rectangular primitives (such as rounded rectangles),

the use of BitBlt has significantly decreased. It is primarily used now for scrolling and copying off-screen

pictures onto the screen (e.g., to implement double-buffering).

A few windowing systems allow the full Postscript imaging model [1] to be used to create images on

the screen. Postscript provides device-independent coordinate systems and arbitrary rotations and scaling

for all objects, including text. Another advantage of using Postscript for the screen is that the same

language can be used to print the windows on paper (since many printers accept Postscript). Sun created

a version used in the NeWS windowing system, and then Adobe (the creator of Postscript) came out with

an official version called "Display Postscript" which is used in the NeXT windowing system and is

supplied as an extension to the X windowing system by a number of vendors, including DEC and IBM.

All of the standard output models only contain drawing operations for two dimensional objects. Two

extensions to support 3-D objects are PEX and OpenGL. PEX [84] is an extension to the X windowing

system that incorporates much of the PHIGS graphics standard. OpenGL (781 is based on the GL

programming interface that has been used for many years on Silicon Graphics machines. OpenGL

provides machine independence for 3-D since it is available for various X platforms (SGI, Sun, etc.) and

is included as a standard part of new versions of Microsoft Windows.

As shown in Figure 3, the earlier windowing systems assumed that a graphics package would be

implemented using the windowing system. For example, the CORE graphics package was implemented

on top of the SunView windowing system. All newer systems, including the Macintosh, X, NeWS,

NeXT, and Microsoft Windows, have implemented a sophisticated graphics system as part of the

windowing system.

5.2.2 Input Model

The early graphics standards, such as CORE and PHIGS, provided an input model that does not support

the modem, direct manipulation style of interfaces. In those standards, the programmer calls a routine to

request the value of a "virtual device" such as a "locator" (pointing device position), "string" (edited

text string), "choice" (selection from a menu), or "pick" (selection of a graphical object). The program

would then pause waiting for the user to take action. This is clearly at odds with the direct manipulation
"mode-free" style, where the user can decide whether to make a menu choice, select an object, or type

something.

User Interface Software Tools -9

SapDhire. SunWindows: Cedar. Macintosh. NeXT:

Ap liationApplicatien
PPrograms

GraphicsWindow & User Interfac
Package System of W.M.

NEWfS, X:

Toolkit o

neindow

System

Pacakage

(c)

Figure 3: Various organizations that have been used by windowing systems. Boxes with extra borders
represent systems that can be replaced by users. Early systems (a) tightly coupled the
window manager and the window system, and assumed that sophisticated graphics and
toolkits would be built on top. The next step in designs (b) was to incorporate into the
windowing system the graphics and toolkits, so that the window manager itself could have a
more sophisticated look and feel, and so applications would be more consistent. Other
systems (c) allow different window managers and different toolkits, while still embedding
sophisticated graphics packages.

User Interface Software Tools - 10

With the advent of modem windowing systems, a new model was provided: a stream of event records

is sent to the window which is currently accepting input. The user can select which window is getting

events using various commands, described in section 5.3. Each event record typically contains the type

and value of the event (e.g., which key was pressed), the window that the event was directed to, a

timestamp, and the x and y position of the mouse. The windowing system queues keyboard events,

mouse button events, and mouse movement events together (along with other special events) and

programs must dequeue the events and process them. It is somewhat surprising that, although there has

been substantial progress in the output model for windowing systems (trom BitBlt to complex 2-D

primitives to 3-D), input is still handled in essentially this same way today as in the original windowing

systems, even though there are s(- well-known unsolved problems with this model:
"* There is no provision for special stop-output (control-S) or abort (control-C, command-dot)

events, so these will be queued with the other input events.

"* The same event mechanism is used to pass special messages from the windowing system to
the application. When a window gets larger or becomes unmovered, the application must
usually be notified so it can adjust or redraw the picture in the window. Most window
systems communicate this by enqueuing special events into the the event stream, which the
program must then handle.

"* The application must always be willing to accept events in order to process aborts and
redrawing requests. If not, then long operations cannot be aborted, and the screen may have
blank areas while they are being processed.

"* The model is device dependent, since the event record has fixed fields for the expected
incoming events. If a 3-D pointing device or one with more than the standard number of
buttons was used instead of a mouse, then the standard event mechanism cannot handle it.

"* Because the events are handled asynchronously, there are many race conditions that can
cause programs to get out of synchronization with the window system. For example, in the X
windowing system, if you press inside a window and release outside, under certain conditions
the program will think that the mouse button is still depressed. Another example is that
refresh requests from the windowing system specify a rectangle of the window that needs to
be redrawn, but if the program is changing the contents of the window, the wrong area may
be redrawn by the time the event is processed. This problem can occur when the window is
scrolled.

Although these problems have been known for a long time, there has been little research on new input

models (an exception is the Garnet Interactors model [511).

5.2.3 Communication

In the X windowing system and NeWS, all communication between applications and the window

system uses inter-process communication through a network protocol. This means that the application

program can be on a different computer from its windows. In all other windowing systems, operations

are implemented by direcly calling the window manager procedures or through special traps into the

operating system. The primary advantage of the X mechanism is that it makes it easier for a person to

ii tcrtace Software Tools - 11

multiple machines with all their windows appearing on a single machine. Another advantage is

.at it is easier to provide interfaces for different programming languages: for example the C interface

lied xlib) and the Lisp interface (called CLX) send the appropriate messages through the network

"-otocol. The primary disadvantage is efficienc.y, since each window request will typically be encoded,

'ýsed to the transport layer, and then decoded, even when the computation and windows are on the same

hine.

'r Interface Layer
. interface of the windowing system allows the user to control the windows. In X, the user can

:ch user interfaces, by killing one window manager and starting another. Popular window

under X include uwm (which has no title lines and borders), twin, mwm (the Motif window

,-r). and olwm (the OpenLook window manager). There is a standard protocol through which

.rams and the base layer communicate to the window manager, so that all programs continue to run

thout change when the window manager is switched. It is possible, for example, to run applications

it use Motif widgets inside the windows controlled by the OpenLook window manager.

complete discussion of the options for the user interfaces of window managers was previously

i>hcd 1471. Also, the video All the Widgets [521 has a 30 minute segment showing many different

f xt window manager user interfaces.

me parts of the user interface of a windowing system, which is sometimes called its "lc jk and feel,"

,iparently be copyrighted and patented. Which parts is a highly complex issue, and the status

.'. ith decisions in various court cases. Good references for more information are the "Legally

.•ine" columns of Communications of the ACM (90].

I.1 Presentation

lhe presentation of the windows defines how the screen looks. One very important aspect of the

:\cntation of windows is whether they can overlap or not. Overlapping windows, sometimes called

"red windows, allow one window to be partially or totally on top of another window, as shown in

This is also sometimes called the desktop metaphor, since windows can cover each other like

paper can cover each other on a desk.2 The other alternative is called tiled windows, which

,a windows are not allowed to cover each other. Figure 5 shows an example of tiled windows.

Sa window manager that supports covered windows can also allow them to be side-by-side, but

. ccrsa. Therefore, a window manager is classified as "covered" if it allows windows to overlap.

xre are usually other aspects to the desktop metaphor, however, such as presenting file operations in a way that mimics
.,pcrations, as in the Star office workstation [98].

User Interface Software Tools - 12

The tiled style was popular for awhile, and was used by Cedar [11091, and early versions of the Star [198),

Andrew [821, and Microsoft Windows. A study even suggested that using tiled windows was more

efficient for users [6]. However, today tiled windows are rarely seen, because users generally prefer

overlapping.

t File Edit UlJeu Label Special Sun 10:39:42 RIIU

......... ~~Control Panels..........
................. 34 items 79.3 M9In disk 36 MB evailabli

New Fa -m

.1 14 d _ Default Application Easy Access

~hato~re~ofacltymdog.¶ General Controls Keyjboard Lael MaTp 1

M~~' H vacintosha HU omPepfo U

Lm crosianS 1 50 items 7. Bi ik3 Baalbeaf
rogram3(Ph N..me

nginenn) ~ ExpreSs Fox Folder - folder /pr~,I/JtP/5s

SExpress Modem ReadMe 8K TeachText documentj~J
FTP Game3and Stuff - folder .- ..

t7 Games - folder
S3D Tic-Tec-Toe 90K application prograf

5 Stix 1 96K application prograrTrArrrreeee~/~
5 Stix Read Me 2K TeachText document ij'............ . .

'B AE3Key 22K application progra ~ ; . .; ..

Figure 4: A screen from the Macintosh showing 3 windows covering each other, and some icons along
the right margin.

Another important aspect of the presentation of windows is the use of icons (also shown in Figures 4

and 5). These are small pictures that represent windows (or sometimes files). They are used because

tht~re would otherwise be too many windows to conveniently fit on the screen and manage. Other aspects

of the presentation include whether the window has a title line or not, what the background (where there

are no windows) looks like, and whether the tritl and borders have control areas for performing window

operations.

604 Ja

UscA-r lntcrfacL' Software Tiook

f=T =m 0 AN -0,ýV t
Sam &" -t I .wSwa4 -10 0. 0

-~~~~~ ~. A."m -- ~a

a40m"- -w-L o a Wa -n a

vmm.

a, A W.. Z9L : a . I.

OwM . .. wha- 40-7 - a .ma ".. .a.W I& ow
r as V N.. vm .-a a.
so 4". ̂ M.a am1 b aa. am"' a. Lan' 9a,*, owa,# P. a..0 PO t -nd ah V

11a Oa & m ohm Uf a- hsg..I"a
. .'a.. 1"afaa .,. e nN &- NMOA C N L- M O POVa

Figue 5 A-&4 sce from ftheCdr 19 windwin s stem. aWindws aeO t d ino2 oums
Thcr is a rowoft WN icns alongw tha otm Eahwno haso a"t4 nfixdmnuo omad
be=4lo-w" thek wei~ line.WN"

* Fgr process rm h Cdr 09 inoing system. maW indows can b"tctveleututin intomaio at thcsmetie.Wndow
manageprovie vsariousway of spcf alnd shbtow. which window ithes listeer. Then most iomporants

beo cthkt-ve. which miean.htteue utcikte os utni idwbl

typing tomput.erhs tyisal us ved by lthe l waindosh. dol n oueadkyor.hr utb

wa for huerotopero whichen ha thedo iosgettn oneybhasd to ut movhovrs window' to callow typingu o
t~oait. Thisisusual fasherterm for the usenr, butc may caulsteninpu to o tohe wsrong wyind.owe ifsthem
usle ter accid tentall ncksv theow mouse. etwnow"btteearortrssicnamli

osXwidwmanagers (includin thiu ay oseiofy and sh penwook window maaes)ao the usenr.Temotipr ton

User Interface Sott ue Tixok________

choose which method is desired. However. the choice can have significant impact on the user imtcrface of

applications. For example. because the Macintosh requires click-to-type, it can provide a singlc menu-bar

at the top, and the commands can always operate on the tocussed window. With move-to-type, the user

might have to pass through various windows (thus giving them the focus) on the way to the top of thc

screen. Therefore, Motif applications must have a menubar in each window so the commands will knoA

which window to operate on.

All covered window systems allow the user to change which window is on top (not covered by other

windows), and usually to send a window to the bottom (covered by all other windows). Other commands

allow windows to be changed size, moved, created and destroyed.

6. Toolkits
A toolkit is a library of "widgets" that can be called by application programs. A widget is a way of

using a physical input device to input a certain type of value. Typically, widgets in toolkits include

menus, buttons, scroll bars, text type-in fields, etc. Figure 6 shows some examples of widgets. Creating

an interface using a toolkit can only be done by programmers, because toolkits only have a procedural

interface.

Using a toolkit has the advantage that the final UI will look and act similarly to other Uls created using

the same toolkit, and each application does not have to re-write the standard functions, such as menus. A

problem with toolkits is that the styles of interaction are limited to those provided. For example, it is

difficult to create a single slider that contains two indicators, which might be useful to input the upper and

lower bounds of a range. In addition, the toolkits themselves are often expensive to create: "The

primitives never seem complex in principle, but the programs that implement them are surprisingly

intricate" [13, p.199]. Another problem with toolkits is that they are often difficult to use since they may

contain hundreds of procedures, and it is often not clear how to use the procedures to create a desired

interface. For example, the documentation for the Macintosh Toolbox now covers six books, of which

about 1/3 is related to user interface programming.

As with the graphics package, the toolkit can be implemented either using or being used by the

windowing system (see Figure 3). Early systems provided only minimal widgets (e.g., just a menu), and

expected applications to provide others. In the Macintosh, the toolkit is at a low level, and the window

manager user interface is built using it. The advantage of this is that the window manager can then use

the same sophisticated toolkit routines for its user interface. When the X system was being developed,

the developers could not agree on a single toolkit, so they left the toolkit to be on top of the windowing

system. In X, programmers can use a variety of toolkits (for example, the xt [441, InterViews [421,

U. r Inerta•c Sotvtaw ixI -15

V Groan~wuose f

557

Motif-Gray Fe

F Motif-Gre-en F9O..........

I p. .
S..............

Figure 6: Some of the widgets with a Motif look-and-feel provided by the Garnetolk.

Garnet [53] or tk [801 toolkits can be used on top of X), but the window manager must usually implement

its user interface from scratch.

Because the designers of X could not agree on a single look-and-feel, they created an intrinsics layer on
which to build different widget sets, which they called xt (441. This layer provides the common services,

such as techniques for object-oriented programming and layout control. The widget set layer is the
collection of widgets that is implemented using the intrinsics. Multiple widget sets with different looks
and feels can be implemented on top of the same intrinsics layer (Figure 7-a), or else the same look-and-
feel can be implemented on top of different intrinsics (Figure 7-b). Recently. Sun announced that it was

phasing out Opend.ook, which means that X and xt will be standardized on the Motif widgct set.

User Interface Software Tools

Open-
Athena MotifOpnLook Wotif Motif Motif

Xt Intrinsics t Interviews Garnet

(a) (b)

Figure 7: (a) At least three different widget sets that have different looks and feels have been
implemented on top of the xt intrinsics. (b) The Motif look-and-feel has been implemented
on at least three different intrinsics.

6.1 Toolkit Intrinsics
Toolkits come in two basic varieties. The most conventional is simply a collection of procedures that

can be called by application programs. Examples of this style include the SunTools toolkit for the

SunView windowing system [106), and the Macintosh Toolbox 12). The oti.er variety uses an object-

oriented programming style which makes it easier for the designer to customize the interaction

techniques. Examples include Smailtalk 11121, Andrew 1821 Garnet 1531, InterViews 1421, and Xt [441.

The advantages of using object-oriented intrinsics are that it is a natural way to think about widgets (the

menus and buttons on the screen seem like objects), the widget objects can handle some of the chores that

otherwise would be left to the programmer (such as refresh), and it is easier to create custom widgets (b'

sub-classing an existing widget). The advantage of the older, procedural style is that it is easier to

implement, no special object-oriented system is needed, and it is easier to interface to multiple

programming languages.

To implement the objects, the toolkit might invent its own object system, as was done with Xt, Andrew

and Garnet, or it might use an existing object system, as was done in interViews [42] which uses C++,

NeXTStep [68] which uses Objective-C, and Rendezvous [30] which uses CLOS (the standard Common

Lisp Object System).

The usual way that object-oriented toolkits interface with application programs is through the use of

call-back procedures. These are procedures defined by the application programmer that are called when a

widget is operated by the end user. For example, the programmer might supply a procedure to be called

when the user selects a menu item. Experience has shown that real interfaces often contain hundreds of

call-backs, which makes the code harder to modify and maintain [57]. In addition, different toolkits, even

User Interface Software Tools - 17

when implemented on the same intrinsics like Motif and OpenLook, have different call-back protocols.

This means that code for one toolkit is difficult to port to a different toolkit. Therefore, research is being

directed at reducing the number of call-backs in user interface software [55].

Some research toolkits have added novel things to the toolkit intrinsics. For example, Garnet 1531,

Rendezvous [311, and Bramble [211 allow the objects to be connected using constraints, which are

relationships that are declared once and then maintained automatically by the system. For example, the

designer can specify that the color of a rectangle is constrained to be the value of a slider, and then the

system will automatically update the rectangle if the user moves the slider.

6.2 Widget Set
Typically, the intrinsics layer is look-and-feel independent, which means that the widgets built on top

of it can have any desired appearance and behavior. However, a particular widget set must pick a look-

and-feel. The video All the Widgets shows many examples of widgets that have been designed over the

years 1521. For example, it shows 35 different kinds of menus. Like window manager user interfaces, the

widgets' look-and-feel can be copyrighted and patented [90).

As was mentioned above, different widget sets (with different looks and feels) can be implemented on

top of the same intrinsics. In addition, the same look-and-feel can be implemented on top of different

intrinsics. Fer example, there are Motif look-and-feel widgets on top of the xt. InterViews and Garnet

intrinsics (Figure 7-b). Although they all look and operate the same (so would be indistinguishable to the

end user), they are implemented quite differently, and have completely different procedural interfaces for

the programmer.

6.3 Specialized Toolkits
A number of toolkits have been developed to support specific kinds of applications or specific classes

of programmers. For example, the SUIT system [83] (which contains a toolkit and an interface builder),

is specifically designed to be easy to learn and is aimed at classroom instruction. Garnet [53] provides

high-level support for graphical, direct manipulation interfaces, and includes a toolkit, interface builder

and other high-level tools. Rendezvous [30] is designed to make it easier to create applications that

support multiple users on multiple machines operating synchronously. Whereas most toolkits only

provide 2-D interaction techniques, the Brown Animation Generation System [1281 and Silicon Graphics'

Inventor toolkit [102, 121] provide preprogrammed 3-D widgets and a framework for creating others.

The Ttoolkit [23] provides built-in primitives for controlling the timing of an interface, which is

important for supporting multi-media, such as video. Special support for animations has been added to

Artkit, including motion blur, timing and curved trajectories [331.

User Interface Software Tools - 18

Tk [801 is a popular toolkit for the X window system because it uses an interpretive language called tcl

which makes it possible to dynamically change the user interface. Tcl also supports the Unix style of

programming where many small programs are glued together.

7. Virtual Toolkits
Although there are many small differences among the various toolkits, much remains the same. For

example, all have some type of menu, button, scroll bar, text input field, etc. Although there are fewer

windowing systems and toolkits than there were five years ago, people are still firding that they must do a

lot of work to convert their software from Motif to OpenLook to the Macintosh and to Microsoft

Windows.

Therefore, a number of systems have been developed that try to hide the differences among the various

toolkits, by providing virtual widgets which can be mapped into the widgets of each toolkit. Another

name for these tools is cross-platform development systems. The programmer writes the code once using

the virtual toolkit and the code will run without change on different platforms and still look like it was

designed with that platform's widgets. For example, the virtual toolkit might provide a single menu

routine, which always has the same programmer interface, but connects to a Motif menu, Macintosh menu

or a Windows menu depending on which machine the application is run on. A recent report

[15] compares a number of virtual toolkits.

There are two styles of virtual toolkits. In one, the virtual toolkit links to the different actual toolkits on

the host machine. For example, XVT [127] provides a C or C++ interface that links to the actual Motif,

OpenLook, Macintosh, MS-Windows, and OS/2-PM toolkits (and also character terminals) and hides

their differences. The second style of virtual toolkit re-implements the widgets in each style. For

example, Galaxy [116] and Open Interface [77] provide libraries of widgets that look like those on the

various platforms. The advantage of the first style is that the user interface is more likely to be look-and-

feel conformant (since it uses the real widgets). The disadvantages are that the virtual toolkit must still

provide an interface to the graphical drawing primitives on the platforms. Furthermore, they tend to only

provide functions that appear in all toolkits. Many of the virtual toolkits that take the second approach,

for example Galaxy, provide a sophisticated graphics package and complete sets of widgets on all

platforms. However, with the second approach, there must always be a large run-time library, since in

addition to the built-in widgets that are native to the machine, there is the re-implementation of these

same widgets in the virtual toolkit library.

All of the toolkits that work on multiple platforms can be considered virtual toolkits of the second type.

For example, SUIT [831 works on X, Macintosh and Windows, and Garnet [53] works on X and the

User Interface Software Tools - lC)

Macintosh. However. these use the same look-and-feel on all platforns (and therefore do not look the

same as the other applications on that platform), so they are not classified as virtual toolkits.

8. Higher Level Tools
Since programming at the toolkit level is quite difficult, there is a tremendous interest in higher level

tools that will make the user interface software production process easier. These are discussed next.

8.1 Phases
Many higher-level tools have components that operate at different times. The design time component

helps, the user interface designer design the user interface. For example. this might be a graphical editor

which can lay out the interface, or a compiler to process a user interface specification language. The next

phase is when the end-user is using the program. Here, the run-time component of the tool is used. This

usually includes a toolkit, but may also include additional software specifically for the tool. Since the

run-time component is "managing" the user interface, the term UsJer Interface Management System

seems appropriate for tools with a significant run-time component.

There may also be an after-run-time component that helps with the evaluation and debugging of the

user interface. Unfortunately, very few user interface tools have an after-run-time component. This is

partially because tools that have tried, such as MIKE [731, discovered that there are very few metrics that

can be applied by computers. A new generation of tools are trying to evaluate how people will interact

with interfaces by automatically creating cognitive models from high-level descriptions of the user

interface. For example, USAGE creates an NGOMSL cognitive model from a UIDE user interface

specification [121.

8.2 Specification Styles
High-level user interface tools come in a large variety of forms. One important way that they can be

classified is by how the designer specifies what the interface should be. As shown in Figure 8, some tools

require the programmer to program in a special-purpose language, some provide an application

framework to guide the programming, some automatically generate the interface from a high-level model

or specification, and others allow the interface to be designed interactively. Each of these types is

discussed below. Of course, some tools use different techniques for specifying different parts of the user

interface. These are classified by their predominant or most interesting feature.

User Interface Software Tools - 20

Specification Format Examples Section

Language Based 8.2.1

State Transition Networks [67], [36] 8.2.1.1

Context-Free Grammars YACC, LEX, 8.2.1.2
Syngraph [70]

Event Languages ALGAE [191, 8.2.1.3
Sassafras [291,
HyperTalk

Declarative Languages Cousin [271, 8.2.1.4
Open Dialog [931,
Motif UIL

Constraint Languages Thinglab [8], 8.2.1.5
C32 [56]

Screen Scrapers Easel [17] 8.2.1.6

Database Interfaces Oracle [791 8.2.1.7

Visual Programming LabView [40] 8.2.1.8
Prograph [871
Visual Basic [1171

Application Frameworks MacApp [1251, 8.2.2
Unidraw [1191

Model-Based Generation MIKE [711, 8.2.3
UIDE [1041,
ITS [1231,
Humanoid [1101

Interactive Graphical Specification 8.2.4

Prototypers Bricklin's Demo [891, 8.2.4.1
Director [431,
HyperCard

Cards Menulay (11], 8.2.4.2
HyperCard

Interface Builders DialogEditor [14], 8.2.4.3
NeXT Interface Builder [681,
Prototyper [971,
UIMX [1181

Data Visualization Tools DataViews [1131 8.2.4.4

Graphical Editors Peridot [481, 8.2.4.5
Lapidary [501,
Marquise [631

Figure 8: Ways to specify the user interface, some tools that use that technique, and the section of this
article that discusses the technique.

User Interface Software Tools - 21

8.2.1 Language Based

With most of the older user interface tools, the designer specified the user interface in a special-purpose

language. This language can take many forms, including context-free grammars, state transition

diagrams, declarative languages, event languages, etc. The language is usually used to specify the syntax

of the user interface; i.e., the legal sequences of input and output actions. This is sometimes called the

"dialog." Green [22] provides an extensive comparison of grammars, state transition diagrams, and

event languages, and Olsen [751 surveys various UIMS techniques.

81.1.1 State Transition Networks

Since many parts of user interfaces involve handling a sequence of input events, it is natural to think of

using a state transition network to code the interface. A transition network consists of a set of states, with

arcs out of each state labeled with the input tokens that will cause a transition to the state at the other end

of the arc. In addition to input tokens, calls to application procedures and the output to display can also

be put on the arcs in some systems. Newman implemented a simple tool using finite state machines in

1968 [671 which handled textual input. This was apparently the first user interface tool. Many of the

assumptions and techniques used in modem systems were present in Newman's: different languages for

defining the user interface and the semantics (the semantic routines were coded in a normal programming

language), a table-driven syntax analyzer, and device independence.

State diagram tools are most useful for creating user interfaces where the user interface has a large

number of modes (each state is really a mode). For example, state diagrams are useful for describing the

operation of low-level widgets (e.g., how a menu or scroll bar works), or the overall global flow of an

application (e.g., this command will pop-up a dialog box, from which you can get to these two dialog

boxes, and then to this other window, etc.). However, most highly-interactive systems attempt to be

mostly "mode-free," which means that at each point, the user has a wide variety of choices of what to do.

This requires a large number of arcs out of each state, so state diagram tools have not been successful for

these interfaces. In addition, state diagrams cannot handle interfaces where the user can operate on

multiple objects at the same time. Another problem is that they can be very confusing for large interfaces,

since they get to be a "maze of wires" and off-page (or off-screen) arcs can be hard to follow.

Recognizing these problems, but still trying to retain the perspicuousness of state transition diagrams,

Jacob [36] invented a new formalism, which is a combination of state diagrams with a form of event

languages (see section 8.2.1.3). There can be multiple diagrams active at the same time, and flow of

control transfers from one to another in a co-routine fashion. The system can create various forms of

direct manipulation interfaces. VAPS is a commercial system that uses the state transition model, and it

eliminates the maze-of-wires problem by providing a spreadsheet-like table in which the states, events,

and actions are specified [1151. Transition networks have been thoroughly researched, but have not

User Interface Software Tools -22

proven particularly successful or useful either as a research or commercial approach.

8.2.1.2 Context-Free Grammars

Many grammar-based systems are based on parser generators used in compiler development. For

example, the designer might specify the user interface syntax using some form of BNF. Examples of

grammar-based systems are Syngraph [701 and parsers built with YACC and LEX in Unix.

Grammar-based tools, like state diagram tools, are not appropriate for specifying highly-interactive

interfaces, since they are oriented to batch processing of strings with a complex syntactic structure. These

systems are best for textual command languages, and have been mostly abandoned for user interfaces by

researchers and commercial developers.

8.2.1.3 Event Languages

With event languages, the input tokens are considered to be "events" that are sent to individual event

handlers. Each handler will have a condition clause that determines what types of events it will handle,

and when it is active. The body of the handler can cause output events, change the internal state of the

system (which might enable other event handlers), or call application routines.

The ALGAE system [191 uses an event language which is an extension of Pascal. The user interface is

programmed as a set of small event handlers, which ALGAE compiles into conventional code. Sassafras

[291, uses a similar idea, but with an entirely different syntax. Sassafras also adds local variables called

"flags" to help specify the flow of control. As described below in section 8.2.4.2, the HyperTalk

language that is part of HyperCard for the Apple Macintosh, can also be considered an event language.

The advantages of event languages are that they can handle multiple input devices active at the same

time, and it is straightforward to support non-modal interfaces, where the user can operate on any widget

or object. The main disadvantage is that it can be very difficult to create correct code, since the flow of

control is not localized and small changes in one part can affect many different pieces of the program. It

is also typically difficult for the designer to understand the code once it reaches a non-trivial size.

However, the success of HyperTalk and similar tools shows that this approach is appropriate for small to

medium-size programs.

8.2.1.4 Declarative Languages

Another approach is to try to define a language that is declarative (stating what should happen) rather

than procedural (how to make it happen). Cousin [271 and HP/Apollo's Open-Dialogue [93] both allow

the designer to specify user interfaces in this manner. The user interfaces supported are basically forms,

where fields can be text which is typed by the user, or options selected using menus or buttons. There are

also graphic output areas that the application can use in whatever manner desired. The application

User Interface Software Tools - 2

program is connected to the user interface through "variables" which can be set and accessed by both.

As researchers have extended this idea to support more sophisticated interactions, the specification has

grown into full application models, and newer systems are described in section 8.2.3.

Another type of declarative language is the layout description languages that come with many toolkits.

For example, Motif's User Interface Language (UIL) allows the layout of widgets to be defined. Since

the UIL is interpreted when an application starts, users can (in theory) edit the UIL code to customize the

interface. UIL is not a complete language, however, in the sense that the designer must still write C code

for many parts of the interface, including any areas containing dynamic graphics and any widgets that

change.

The advantage of using decrarative languages is that the user interface designer does not have to worry

about the time sequence of events, and can concentrate on the information that needs to be passed back

and forth. The disadvantage is that only certain types of interfaces, can be provided this way, and the rest

must be programmed by hand in the "graphic areas" provided to application programs. The kinds of

interactions available are preprogrammed and fixed. In particular, these systems provide no support for

such things as dragging graphical objects, rubber-band lines, drawing new graphical objects, or even

dynamically changing the items in a menu based on the application mode or context. However, these

languages are now proving successful as intermediate languages describing the layout of widgets (such as

UIL) that are generated by interactive tools. They were also an important intermediate research step on

the way to today's model-based approaches (section 8.2.3).

8.2.1.5 Constraint Languages

A number of user interface tools allow the programmer to use constraints to define the user interface

[9]. Early constraint systems include Sketchpad [1081 which pioneered the use of graphical constraints

in a drawing editor, and Thinglab [8] which used constraints for graphical simulation. Subsequently,

Thinglab was extended to aid in the generation of user interfaces [9].

Section 6.1 mentioned the use of constraints as part of the intrinsics of a toolkit. A number of research

toolkits now supply constraints as an integral part of the object system (e.g., Garnet [53]). In addition,

some systems have provided higher-level interfaces to constraints. Graphical Thinglab [10] allows the

designer to create constraints by wiring icons together, and NoPump [1241, C32 [561 and Penguims

[34] allow constraints to be defined using spreadsheet-like interfaces.

The advantages of constraints is that they are a natural way to express many kinds of relationships that

arise frequently in user interfaces. For example, that lines should stay attached to boxes, that labels

should stay centered within boxes, etc. However, a disadvantage with constraints is that they require a

sophisticated run-time system to solve them efficiently. Another problem is that they can be hard to

User Interface Software Tools - 24

debug when specified incorrectly since it can be difficult to trace the causes and consequences of values

changing. However, a growing number of research systems are using constraints, and it appears that

modem constraint solvers and debugging techniques may solve these problems, so constraints have a

great potential to simplify the programming task. As yet, there are no commercial user interface tools

using constraints.

82.1.6 Screen Scrapers

Some commercial tools are specialized to be "front-cnders" or "screen scrapers" which provide a

graphical user interface to old programs without changing the existing application code. They do this by

providing an in-memory buffer that pretends to be the screen of an old character terminal such as might

be attached to an IBM mainframe. When the mainframe application outputs to the buffer, a program the

designer writes in a special programming language converts this into an update of a graphical widget.

Similarly, when the user operates a widget, the script converts .this into the appropriate edits of tne
character buffer. The leading program of this type is 'Easel [17], whIsch els, contains an interface builder

for laying out the widgets.

8.2.1.7 Database Interfaces

A very important class of commercial tools support form-based or GUI-based access to databases.

Major database vendors such as Oracle [791 provide tools which allow designers to define the user

interface for accessing and setting data. Often these tools include interactive form editors (which are

essentially interface builders) and special database languages. Fourth generation languages (4GLs), that

support defining the interactive forms for accessing and entering data, also fall into this category.

8.2.1.8 Visual Programming

"Visual programs" use graphics and two (or more) dimensional layout as part of the program

specification [54]. Many different approaches to using visual programming to specify ,iser interfaces

have been investigated. Most systems tha, support state transition networks (section 8.2.1.1) use a visual

representation. Another popular technique is to use dataflow languages. In these, icons represent

processing steps, and the data flow along the connecting wires. The user interface is usually constructed

directly by laying out pre-built widgets, in the style of interface builders (section 8.2.4.3). Exampies of

visual programming systems for creating user interfaces include Labview [401 which is specialized for

controlling laboratory instruments, and ProGraph [871 Using a visual language seems to make it easier

for novice programmers, but large programs still suffer from the familiar "maze of wires" problem.

Other papers (e.g., [541) have analyzed the strengths and weaknesses of visual programming in detail.

Another popular language is Visual Basic from Microsoft [1171. Although this is more of a structure

editor for Basic combined with an interface builder, and therefore does not really count as a visual

User Interface Software Tools - 25

language, it does make the construction of user interface software easier. Microsoft is pushing Visual

Basic as the extension language that people will use to customize and connect all future Windows-based

applications.

8.2.1.9 Summary of Language Approaches

In summary, there have been many different types of languages that have been designed for specifying

user interfaces. One problem with all of these is that they can only be used by professional programmers.

Some programmers have objected to the requirement for learning a new language for programming just

the user interface portion [72]. This has been confirmed by market research [126, p.29]. Furthermore, it

seems more natural to define the graphical part of a user interface using a graphical editor (see section

8.2.4). However, it is clear that for the foreseeable future, much of the user interface. will still need to be

created by writing programs, so it is appropriate to continue investigations into the best language to use

for this. Indeed a new book is entirely devoted to investigating the languages for programming user

interfaces [58].

8.2.2 Application Frameworks

After the Macintosh Toolbox had been available for a little while, Apple discovered that programmers

had a difficult time figuring out how to call the various toolkit functions, and how to ensure that the

resulting interface met the Apple guidelines. They therefore created a software system that provides an

overall application framework to guide programmers. This is called MacApp [92, 1251 and uses the

object-oriented language Object Pascal. Classes are provided for the important parts of an application,

such as the main windows, the commands, etc., and the programmer specializes these classes to provide

the application-specific details, such as what is actually drawn in the windows and which commands are

provided. MacApp has been very successful at simplifying the writing of Macintosh applications.

Unidraw [119] uses a similar approach, but it is more specialized for graphical editors. This means that

it can provide even more support. Unidraw uses the C++ object-oriented language and is part of the

InterViews system [42]. Unidraw has been used to create various drawing and CAD programs, and a user

interface editor [1201. The Garnet framework is also aimed at graphical applications, but due to its

graphical data model, many of the built-in routines can be used without change (the programmer does not

usually need to write methods for subclasses) [59]. The ACE system from I-IP provides an interactive

editor that allows some of the properties of objects to be specified, but most of the application-specific

behavior must still be programmed [37]. Even more specialized are various graph programs, such as

Edge [661 and TGE [381. These provide a framework in which the designer can create programs that

display their data as trees or graphs. The programmer typically specializes the node and arc classes, and

specifies some of the commands, but the framework handles layout and the overall control.

User Interface Software Tools -26

An emerging popular approach aims to replace today's large, monolythic applications with smaller

components that attach together. For example, you might buy a separate text editor, ruler, paragraph

formatter, spell checker, and drawing program, and have them all work together seamlessly. This

approach was invented by the Andrew environment [82] which provides an object-oriented document

model that supports the embedding of different kinds of data inside other documents. These "insets" are

unlike data that is cut and pasted in systems like the Macintosh because they bring along the programs

that edit them, and therefore can always be edited in place. Furthermore, the container document does not

need to know how to display or print the inset data since the original program that created it is always

available. The designer creating a new inset writes subclasses that adheres to a standard protocol so the

system knows how to pass input events to the appropriate editor. The next generation of operating

systems will use this approach extensively: it is the foundation for Microsoft's OLE and Apple's

OpenDoc.

All of these frameworks require the designer to write code, typically by creating application-specific

sub-classes of the standard classes provided as part of the framework.

Another class of systems that might be considered "frameworks" help create user interfaces that are

composed of a series of "cards," such as HyperCard from Apple. These systems are discussed in section

8.2.4.2 because their primary interface to the designer is graphical.

8.2.3 Model-Based Automatic Generation

A problem with all of the language-based tools is that the designer must specify a great deal about the

placement, format, and design of the user interfaces. To solve this problem, some tools use automatic

generation so that the tool makes many of these choices from a much higher-level specification. Many of

these tools, including Mickey [741, Jade [114], Chisel [95], and DON [391 have concentrated on creating

menus and dialog boxes. Chisel and Jade allow the designer to use a graphical editor to edit the generated

interface if it is not good enough. DON has the most sophisticated layout mechanisms and takes into

account the desired window size, balance, columness, symmetry, grouping, etc. Creating dialog boxes

automatically has been very thoroughly researched, but there still are no commercial tools that do this.

Another approach is to try to create a user interface based on a list of the application procedures.

MIKE [71] creates an initial interface that is menu-oriented and rather verbose, but the designer can

change the menu structure, use icons for some commands, and even make some commands operate by

direct manipulation. The designer uses a graphical editor, like those described in section 8.2.4, to specify

these changes.

UIDE (the User-Interface Design Environment) [104] requires that the semantics of the application be

User Interface Software Tools -27

defined in a special-purpose language, and therefore might be included with the language-based tools

(section 8.2.1). It is placed here instead because the language is used to describe the functions that the

application supports and not the desired interface. UIDE is classified as a "model-based" approach

because the specification serves as a high-level, sophisticated model of the application semantics. In

UIDE, the description includes pre- and post-conditions of the operations, and the system uses these to

reason about the operations, and to automatically generate an interface. One interesting part of this

system is that the user interface designer can apply "transformations" to the interface. These change the

interface in various ways. For example, one transformation changes the interface to have a currently

selected object instead of requiring an object to be selected for each operation. UIDE applies the

transformations and insures that the resulting interface remains consistent. Another feature of UIDE is

that the pre- and post-conditions are used to automatically generate help [1031. One direction of current

research is to make UIDE models easier to create by allowing users to demonstrate some parts of the

interface [20]..

Another model-based system is HUMANOID [110] which supports the modeling of the presentation,

behavior and dialogue of an interface. The HUMANOID modeling language includes abstraction,

composition, recursion, iteration and conditional constructs to support sophisticated interfaces. The

HUMANOID system, which is built on top of the Garnet toolkit [531, provides a number of interactive

modeling tools to help the designer specify the model. The developers of HUMANOID and UIDE are

collaborating on a new combined model called MASTERMIND that integrates their approaches [65].

The ITS [1231 system also uses rules to generate an interface. ITS was used to create the visitor

information system for the EXPO 1992 worlds fair in Seville, Spain. Unlike the other rule-based systems,

the designer using ITS is expected to write many of the rules, rather than just writing a specification that

the rules work on. In particular, the design philosophy of ITS is that all design decisions should be

codified as rules so that they can be used by subsequent designers, which will hopefully mean that

interface designs will get easier and better as more rules are entered. As a result, the designer should

never use graphical editing to improve the design, since then the system cannot capture the reason that the

generated design was not sufficient.

While the idea of having the user interface generated automatically is appealing, this approach is still at

the research level, because the user interfaces that are generated are generally not good enough. A further

problem is that the specification languages can be quite hard to learn and use. Extensive current research

is addressing the problems of expanding the range of what can be created automatically (to go beyond

dialog boxes) and to make the model-based approach easier to use.

User Interface Software Tools -28

8.2.4 Direct Graphical Specification

The tools described next all allow the user interface to be defined, at least partially, by placing objects

on the screen using a pointing device. This is motivated by the observation that the visual presentation of

the user interface is of primary importance in graphical user interfaces, and a graphical tool seems to be

the most appropriate way to specify the graphical appearance. Another advantage of this technique is that

it is usually much easier for the designer to use. Many of these systems can be used by non-programmers.

Therefore, psychologists, graphic designers and user interface specialists can more easily be involved in

the user interface design process when these tools are used.

These tools can be distinguished from those that use "visual programming" (section 8.2.1.8) since with

direct graphical specification, the actual user interface (or a part of it) is drawn, rather being generated

indirectly by a visual program. Thus, direct graphical specification tools have been called direct

manipulation programming since the user is directly manipulating the user interface widgets and other

elements.

The tools that support graphical specification can be classified into four categories: prototyping tools,

those that support a sequence of cards, interface builders, and editors for application-specific graphics.

8.2.4.1 Prototyping Tools

The goal of prototyping tools is to allow the designer to quickly mock up some examples of what the

screens in the program will look like. Often, these tools cannot be used to create the real user interface of

the program; they just show how some aspects will look. This is the chief factor that distinguishes them

from other high-level tools. Many parts of the interface may not be operable, and some of the things that

look like widgets may just be static pictures. In most prototypers, no real toolkit widgets are used, which

means that the designer has to draw simulations that look like the widgets that will appear in the interface.

The normal use is that the designer would spend a few days or weeks trying out different designs with the

tool, and then completely reimplement the final design in a separate system. Most prototyping tools can

be used without programming, so they can, for example, be used by graphic designers.

Note that this use of the term "prototyping" is different from the general phrase "rapid prototyping,"

which has become a marketing buzz-word. Advertisements for just about all user interface tools claim

that they support "rapid prototyping," by which they mean that the tool helps create the user interface

software quicker. The term "prototyping" is being used in this paper in a much more specific manner.

Probably the first prototyping tool was Dan Bricklin's Demo [89]. This is a program for an IBM PC

that allows fi,- designer to create sample screens composed of characters and "character graphics"

(where the fixed-size character cells can contain a graphic like a horizontal, vertical or diagonal line).

User Interface Software Tools -29

The designer can easily create the various screens for the application. It is also relatively easy to specify

the actions (mouse or keyboard) that cause transitions from one screen to another. However, it is difficult

to define other behaviors. In general, there may be some support for type-in fields and menus in

prototyping tools, but there is little ability to process or test the results.

For graphical user interfaces, designers often use tools like Director [431 for the Macintosh which is

actually an animation tool. The designer can draw example screens, and then specify that when the

mouse is pressed in a particular place, an animation should start or a different screen should be displayed.

Components of the picture can be reused in different screens, but again the ability to show behavior is

limited. HyperCard for the Macintosh is also often used as a prototyping tool.

The primary disadvantage of these prototyping tools is that they cannot create the actual code for the

user interface. Therefore, the interfaces must be re-coded after prototyping. There is also the risk that the

programmers who implement the real user interface will ignore the prototype. Therefore, a new research

tool is trying to provide a quick sketching interface and then convert the sketches into actual widgets [41].

8.2.4.2 Cards

Many graphical programs are limited to user interfaces that can be presented as a sequence of mostly

static pages, sometimes called "frames," "cards," or "forms." Each page contains a set of widgets,

some of which cause transfer to other pages. There is usually a fixed set of widgets to choose from,

which were coded by hand.

An early example of this is Menulay [(l], which allows the designer to place text, graphical

potentiometers, iconic pictures, and light buttons on the screen and see exactly what the end user will see

when the application is run. The designer does not need to be a programmer to use Menulay. Trillium

[28], which is aimed at designing the user interface panels for photocopiers, is very similar to Menulay.

One strong advantage that Trillium has over Menulay is that the cards can be executed immediately as

they are designed since the specification is interpreted rather than compiled. Trillium also separates the

behavior of interactions from the graphic presentation and allows the designer to change the graphics

(while keeping the same behavior) without programming. One weakness is that it has little support for

frame-to-frame transitions, since this rarely is necessary for photocopiers.

Probably, the most famous example of a card-based system is HyperCard from Apple. There are now

many similar programs, such as GUIDE [811, Spinnaker Plus [991, and Tool Book [31. In all of these, the

designer can easily create cards containing text fields, buttons, etc., along with various graphic

decorations. The buttons can transfer to other cards. These programs provide a scripting language to

provide more flexibility for buttons. HyperCard's scripting language is called HyperTalk, and as

mentioned in section 8.2.1.3, is really an event language, since the programmer writes short pieces of

User Interface Software Tools -30

code that are executed when input events occur.

8.2.4.3 Interface Builders

An interface builder allows the designer to create dialog boxes, menus and windows that are to be part

of a larger user interface. These are also called Interface Development Tools. Interface builders allow the

designer to select from a pre-defined library of widgets, and place them on the screen using a mouse.

Other properties of the widgets can be set using property sheets. Usually, there is also some support for

sequencing, such as bringing up sub-dialogs when a particular button is hit. The Steamer project at BBN

demonstrated many of the ideas later incorporated into interface builders and was probably the first

object-oriented graphics sy stem [l011. Other examples of research interface builders are DialogEditoi

[14], vu [94] and Gilt [551. There are literally hundreds of commercial interface builders. Just a few

examples are the NeXT Interface Builder [681, Prototyper for the Macintosh [971, WindowsMAKER for

Microsoft Windows on the PC [5], UIMX for X Windows and Motif [118], and devGuide from Sun for

OpenLook [107]. Many of the tools discussed above, such as the virtual toolkits, visual languages, and

application frameworks, also contain interface builders.

Interface builders use the actual widgets from a toolkit, so they can be used to build parts of real

applications. Most will generate C code templates that can be compiled along with the application code.

Others generate a description of the interface in a language that can be read at run-time. For example,

UIMX generates a UIL description. It is usually important that the programmer not edit the output of the

tools (such as the generated C code) or else the tool can no longer be used for later modifications.

Although interface builders make laying out the dialog boxes and menus easier, this is only part of the

user interface design problem. These tools provide little guidance towards creating good user interfaces,

since they give designers significant freedom. Another problem is that for any kind of program that has a

graphics area (such as drawing programs, CAD, visual language editors, etc.), interface builders do not

help with the contents of the graphics pane. Also, they cannot handle widgets that change dynamically.

For example if the contents of a menu or the layout of a dialog box changes based on program state, this

must be programmed by writing code. To help with this part of the problem, some interface builders, like

UIMX [1181, provide a C code interpreter.

8.2.4.4 Data Visualization Tools

An important commercial category of tools are dynamic data visualization systems. These tools, which

tend to be quite expensive, emphasize the display of dynamically changing data on a computer, and are

used as front ends for simulations, process control, system monitoring, network management, and data

analysis. The interface to the designer is usually quite similar to an interface builder, with a palette of

gauges. graphers, knobs and switches that can be placed interactively. However, these controls usually

User Interface Software Tools - 31

are not from a toolkit and are supplied by the tool. Example tools in this category include DataViews

[113], SL-GMS [96], and VAPS [115).

8.2.4.5 Editors for Application-Specific Graphics

When an application has custom graphics, it would be useful if the designer could draw pictures of

what the graphics should look like rather than having to write code for this. The problem is that the

graphic objects usually need to change at run time, based on the actual data and end user's actions.

Therefore, the designer can only draw an example of the desired display, which will be modified at

run-time, and so these tools are called "demonstrational programming" [601. This distinguishes these

programs from the graphical tools of the previous three sections, where the full picture can be specified at

design time. As a result of the generalization task of converting the example objects into parameterized

prototypes that can change at run-time, most of these systems are still in the research phase.

Peridot [48] allows new, custom widgets to be created. The primitives that the designer manipulates

with the mouse are rectangles, circles, text, and lines. The system generalizes from the designer's actions

to create parameterized, object-oriented procedures like those that might be found in toolkits.

Experiments showed that Peridot can be used by non-programmers. Lapidary [501 extends the ideas of

Peridot to allow general application-specific objects to be drawn. For example, the designer can draw the

nodes and arcs for a graph program. The DEMO system [181 allows some dynamic, run-time properties

of the objects to be demonstrated, such as how objects are created. The Marquise tool 1631 allows the

designer to demonstrate when various behaviors should happen, and supports palettes which control the

behaviors. Research continues on making these ideas practical.

8.3 Specialized Tools
For some application domains, there are customized tools that provide significant high-level support.

These tend to be quite expensive, however (i.e., US$20,000 to US$50,000). For example, in the

aeronautics and real-time control areas, there are a number of high-level tools, including AutoCode

(41 and InterMAPhics [861.

9. Technology Transfer
User interface tools are an area where research has had a tremendous impact on the current practice of

software development. Of course, window managers and the resulting "GUI style" comes from the

seminal research at the Stanford Research Institute, Xerox Palo Alto Research Center, and MIT in the

1970s. Interface builders and "card" programs like HyperCard were invented in research labs at BBN,

the University of Toronto, Xerox PARC, and others. Now, interface builders are at least a US$100

million per year business and are widely used for commercial software development. Event languages, as

User Interface Software Tools - 32

widely used in HyperTalk and elsewhere, were first investigated in research labs. The next generation of

environments, like OLE and OpenDoc. will be based on the component architecture which was developed

in the Andrew environment from CMU. Thus, whereas some early UIMS approaches like transition

networks and grammars may not have been successful, overall, the user interface tool research has

changed the way that software is developed.

10. Evaluating User Interface Tools
There are clearly a large number of approaches to how tools work, and there are research and

commercial tools that use each of the techniques. When faced with a particular programming task, the

designer might ask which tool is the most appropriate. Different approaches are appropriate for different

kinds of tasks, and orthogonally, there are some dimensions that are useful for evaluating all tools. An

important point is that in today's market, there is probably a commercial higher-level tool appropriate for

most tasks, so if you are programming directly at the window manager or even toolkit layer, there may be

a tool that will save you much work.

10.1 Approaches
Using the commercial tools, if you are designing a command-line style interface, then a parser-

generator like YACC and Lex is appropriate. If you are creating a graphical application, then you should

definitely be using a toolkit appropriate to your platform. If there is an application framework available,

it will probably be very helpful. For creating the dialog boxes and menus, an interface builder is very

useful, and generally easier to use than declarative languages like UIL. If your application is entirely (or

mostly) pages of information with some fields for the user to fill in, then the card tools might be

appropriate.

Among the approaches that are still in the research phase, constraints seem quite appropriate for

specifying graphical relationships, automatic generation may be useful for dialog boxes and menus, and

graphical editors will allow the graphical elements of the user interface to be drawn.

There is a big debate going on about the model-based and direct graphical specification approaches

[122, 105]. The model-based tools provide a top-down (or "application-out") approach where the

functions are specified first, whereas the graphical tools provide a bottom-up (or "user-interface-in")

approach where the user interface is designed before the functions. Furthermore, the automatic, model-

based approaches seem to provide too little flexibility to the designer, whereas the graphical tools provide

too much flexibility and not enough guidance. Some researchers are trying to create systems that

combine both approaches to try to achieve the advantages of both [201.

User Interface Software Tools -33

10.2 Dimensions
There are many dimensions along which you might evaluate user interface tools. The importance given

to these different factors will depend on the type of application to be created, and the needs of the

designers.

" Depth. How much of the user interface does the tool cover? For example, Interface Builders
help with dialog boxes, but do not help with creating interactive graphics. Does the tool help
with the evaluation of the interfaces?

"* Breadth. How many different user interface styles are supported, or is the resulting user
interface limited to just one style, such as a sequence of cards? If this is a higher-level tool,
does it cover all the widgets in the underlying toolkit? Can new interaction techniques and
widgets be added if necessary?

"* Portability. Will the resulting user interface run on multiple platforms, such as X,
Macintosh and Windows?

" Ease of use of tools. How difficult axe the tools to use? For toolkits and most language-
based higher-level tools, highly-trained professional programmers are needed. For some
graphical tools, even inexperienced end-users can generate user interfaces. Also, since the
designers are themselves users of the tools, the conventional user-interface principles can be
used to evaluate the quality of the tools' own user interface.

" Efficiency for designers. How fast can designers create user interfaces with the tool? This
is often related to the quality of the user interface of the tool.

*Quality of resulting interfaces. Does the tool generate high-quality user interfaces? Does
the tool help the designer evaluate and improve the quality? Many tools allow the designer
to produce any interface desired, so they provide no specific help in improving the quality of
the user interfaces.

*Performance of resulting interface. How fast does the resulting user interface operate?
Some tools interpret the specifications at run-time, or provide many layers of software, which
may make the resulting user interface too slow on some target machines. Another
consideration is the space overhead since some tools require large libraries to be in memory
at run-time.

* Price. Some tools are provided free by research organizations, such as the xt toolkit from
MIT and Garnet from CMU. Most personal computers and workstations today come with a
free toolkit. Commercial higher level tools can range from $200 to $50,000, depending on
their capabilities.

*Robustness and Support. In one study, users of many of the commercial tools complained
about bugs even in the officially released version [57], so checking for robustness is
important. Since many of the tools are quite hard to use, the level of training and support
provided by the vendor might be important.

Naturally, there are tradeoffs among these criteria. Generally, tools that have the most power (depth

and breadth) are more difficult to use. The tools that are easiest to use might be most efficient for the

designer, but not if they cannot create the desired interfaces.

As tools become more widespread, reviews and evaluations of them are beginning to appear in

magazines such as Open Systems Today for Unix and PC Magazine. Market research firms are writing

User Interface Software Tools - 34

reports evaluating various tools [126, 24, 161. Also, there are a few formal studies of tools (321.

11. Research Issues
Although there are many user interface tools, there are plenty of areas in which further research is

needed. A report prepared for an NSF study discusses future research ideas for user interface tools at

length [76]. Here, a few of the important ones are summarized.

11.1 New Programming Languages
The built-in input/output primitives in today's programming languages support a textual question-and-

answer style of user interface which is modal and well-known to be poor. Most of- today's tools use

libraries and interactive programs which are separate from programming languages. However, many of

the techniques, such as object-oriented programming, multiple-processing, and constraints,. are best

provided as part of the programming language. Furthermore, an integrated environment, where the

graphical parts of an application can be specified graphically and the rest textually, would make the

generation of applications much easier. A new book discusses how programming languages can be

improved to better support user interface software [581.

11.2 Increased Depth
Many researchers are trying to create tools that will cover more of the user interface, such as

application-specific graphics and behaviors. The challenge here is to allow flexibility to application

developers while still providing a high level of support. Tools should also be able to support Help, Undo,

and Aborting of operations.

Today's user interface tools mostly help with the generation of the code of the interface, and assume

that the fundamental user interface design is complete. What are also needed are tools to help with the

generation, specification, and analysis of the design of the interface [411. For example, an important first

step in user interface design is task analysis, where the designer identifies the particular tasks that the end

user will need to perform. Research should be directed at creating tools to support these methods and

techniques. These might eventually be integrated with the code generation tools, so that the information

generated during early design can be fed into automatic generation tools, possibly to produce an interface

directly from the early analyses. The information might also be used to automatically generate

documentation and run-time help.

Another approach is to allow the designer to specify the design in an appropriate notation, and then

provide tools to convert that notation into interfaces. For example, the UAN [261 is a notation for

expressing the end user's actions and the system's responses.

User lnterface Software Tools - 35

Finally, much work is needed in ways for tools to help evaluate interface designs. Initial attempts, such

as in MIKE [731, have highlighted the need for better models and metrics against which to evaluate the

user interfaces. Research in this area is continuing by cognitive psychologists and other user interface

researchers (e.g., (121).

11.3 Increased Breadth
We can expect the user interfaces of tomorrow to be different from the conventional window-and-

mouse interfaces of today, and tools will have to change to support the new styles. For example, most

tools today only deal with two-dimensional objects, but there is already a demand to provide 3-D

visualizations and animations. New input devices and techniques will probably replace the conventional

mouse and menu styles. For example, gesture and handwriting recognition are appearing in mass-market

commercial products, such as notepad computers and "personal digital assistants" like Apple's Newton

(gesture recognition has actually * ;n used since the 1970s in commercial CAD tools). "Virtual reality"

systems, where the compute. (.ýates an artificial world and allows the user to explore it, cannot be

handled by any of today's tools. In these "non-WIMP" applications (WIMP stands for Windows, Icons,

Menus and Pointing devices), designers will also need better control over the timing of the interface, to

support animations and various new media like video [69]. Although a few tools are directed at multiple-

user apolications, there are no direct graphical specification tools, and the current tools are limited the

styles of applications they support.

A more immediate concern is supporting interfaces that can be moved from one natural language to

another (like English to French). Internationalizing an interface is much more difficult than simply

translating the text strings, and may include different number, date, and time formats, new input methods,

redesigned layouts, different color schemes, and new icons [881. How can future tools help with this

process?

11.4 End User Programming and Customization
One of the most successful computer programs of all time is the spreadsheet. The primary reason for

its success is that end users can program (by writing formulas and macros). However, end user

programming is rare in other applications, and where it exists, usually requires learning conventional

programming. For example, AutoCAD provides Lisp for customization. More effective mechanisms for

users to customize existing applications and create new ones are needed [611. However, these should not

be built into individual applications as is done today, since this means that the user must learn a different

programming technique for each application. Instead, the facilities should be provided at the system

level, and therefore should be part of the underlying toolkit. Naturally, since this is aimed at end users, it

will not be like programming in C, but rather at some higher level.

User Interface Software Tools - 36

The X Business Group predicts that there will be an increased use of tools by end users, rather than

professional software developers, which will present enormous opportunities and challenges to tool

creators [126].

There are many levels at which users might want to modify these "malleable interfaces:" simple

changing of menus and properties, direct programming of new functions like in spreadsheets, or

connecting together pre-built components, as in the Andrew and OLE frameworks. Future UI tools

should support changes at all of these levels.

11.5 Application and UI Separation
One of the fundamental goals of user interface tools is to allow the better modularization and separation

of user interface code from application code. However, a recent survey reported that modem toolkits

actually make this separation more difficult, due to the large number of call-back procedures required

(57]. Therefore, further research is needed into ways to better modularize the code, and how tools can

support this.

11.6 Tools for the Tools
It is very difficult to create the tools described in this paper. Each one takes an enormous effort.

Therefore, work is needed in ways to make the tools themselves easier to create. For example, the Garnet

toolkit is exploring mechanisms specifically designed to make high-level graphical tools easier to create

[621. The Unidraw framework has also proven useful for creating interface builders [1201. However,

more work is needed.

12. Conclusions
The area of user interface tools is expanding rapidly. Five years ago, you would have been hard-

pressed to find any successful commercial higher-level tools, but now there are over 100 different tools,

and tools are turning into a billion dollar a year business. Chances are that today, whatever your project

is, there is a tool that will help. Tools that are coming out of research labs are covering increasingly more

of the user interface task, are more effective at helping the designer, and are creating better user

interfaces. As more companies and researchers are attracted to this area, we can expect the pace of

innovation to continue to accelerate. There will be many exciting and useful new tools available in the

near future.

User Interface Software Tools -37

References
1. Adobe Systems, Inc. Postscript Language Reference Manual. Addison-Wesley, 1985.

2. Apple Computer, Inc. Inside Macintosh. Addison-Wesley, 1985.

3. Asymetrix Corporation. ToolBook. 110 110th Ave. N.E., Suite 717, Bellevue, WA 98004. (206)
462-0501.

4. Integrated Systems. AutoCode. 3260 Jay Street, Santa Clara, CA 94054. (408) 980-1500.

5. Blue Sky Software Corporation. WindowsMAKER. 2375 East Tropicana Ave., Suite 320, Las Vegas,
NV 89119. (702) 465-6365.

6. Sara A. Bly and Jarrett K. Rosenberg. A Comparison of Tiled and Overlapping Windows. Human
Factors in Computing Systems, Proceedings SIGCHI'86, Boston, Mass, April, 1986, pp. 101-106.

7. Booz Allen & Hamilton Inc. NeXTStep vs. Other Development Environments; Comparative Study.
Report available from NeXT Computer, Inc.

8. Alan Borning. "The Programming Language Aspects of Thinglab; a Constraint-Oriented Simulation
Laboratory". ACM Transactions on Programming Languages and Systems 3, 4 (Oct. 1981), 353-387.

9. Alan Boming and Robert Duisberg. "Constraint-Based Tools for Building User Interfaces". ACM
Transactions on Graphics 5, 4 (Oct. 1986), 345-374.

10. Alan Boming. Defining Constraints Graphically. Human Factors in Computing Systems,
Proceedings SIGCHI'86, Boston, MA, April, 1986, pp. 137-143.

11. W. Buxton, M.R. Lamb, D. Sherman, and K.C. Smith. Towards a Comprehensive User Interface
Management System. Computer Graphics, 17(3), Proceedings SIGGRAPH'83, Detroit, Mich, July, 1983,
pp. 35-42.

12. Michael D. Byrne, Scott D. Wood, Piyawadee Sukaviriya, James D. Foley and David E. Kieras.
Automating Interface Evaluation. Human Factors in Computing Systems, Proceedings SIGCHI'94,
Boston, MA, April, 1994, pp. 232-237.

13. Luca Cardelli and Rob Pike. Squeak: A Language for Communicating with Mice. Computer
Graphics, Proceedings SIGGRAPH'85, San Francisco, CA, July, 1985, pp. 199-204.

14. Luca Cardelli. Building User Interfaces by Direct Manipulation. ACM SIGGRAPH Symposium on
User Interface Software and Technology, Proceedings UIST'88, Banff, Alberta, Canada, OcL, 1988, pp.
152-166.

15. Richard Chimera. Evaluation of Platform Indeplndent User Interface Builders. Tech. Rept. Working
paper 93-09, Human-Computer Interaction Laboratory, University of Maryland, March, 1993.
16. Donald A. DePalma and Stuart D. Woodring. "Client/Server Power Tools Futures". The Software
Strategy Report 4, 1 (April 1993), 2-13. Forrester Research, One Brattle Square, Cam b, MA 02138..

17. Easel. Workbench. 25 Corporate Drive, Burlington, MA 01803. (617) 221-2100.

18, Gene L. Fisher, Dale E. Busse, and David A. Wolber. Adding Rule-Based Reasoning to a
Demonstrational Interface Builder. ACM SIGGRAPH Symposium on User Interface Software and
Tectmology, Proceedings UIST'92, Monterey, CA, Nov., 1992, pp. 89-97.

19. Mark A. Flecchia and R. Daniel Bergeron. Specifying Complex Dialogs in ALGAE. Human Factors
in Computing Systems, CHI+GI'87, Toronto, Ont., Canada, April, 1987, pp. 229-234.

User Interface Software Tools - 38

20. Martin R. Frank and James D. Foley. Model-Based User Interface Design by Example and by
Interview. ACM SIGGRAPH Symposiam on User Interface Software and Technology, Proceedings
UIST'93, Atlanta, GA, Nov., 1993, pp. 129-137.

21. Michael Gleicher. A Graphics Toolkit Based on Differential Constraints. ACM SIGGRAPH
Symposium on User Interface Software and Technology, Proceedings UIST'93, Atlanta, GA, Nov., 1993,
pp. 109-120.

22. Mark Green. "A Survey of Three Dialog Models". ACM Transactions on Graphics 5, 3 (July 1986),
244-275.

23. Nuno M. Guimaraes, Nuno M. Correia, and Telmo A. Carmo. Programming Time in Multirn.ediL
User Interfaces. ACM SIGGRAPH Symposium on User Interface Software and Technology, Proceedings
UIST'92, Monterey, CA, Nov., 1992, pp. 125-134.

24. Mark Hanner. Senior Research Analyst. Meta Group. 500 Airport Blvd. Burlingame, CA 94010.
Private Communication.

25. H. Rex Hartson and Deborah Hix. "Human-Computer Interface Development: Concepts and Systems
for Its Management". Computing Surveys 21, 1 (March 1989), 5-92.

26. H. Rex Hartson, Antonio C. Siochi, and.Deborah Hix. "The UAN: A User-Oriented Representation
for Direct Manipulation Interface Designs". ACM Transactions on Information Systems 8, 3 (July 1990),
181-203.

27. Philip J. Hayes, Pedro A. Szekely, and Richard A. Lenmer. Design Alternatives for User Interface
Management Systems Based on Experience with COUSIN. Human Factors in Computing Systems,
Proceedings SIGCHI'85, San Francisco, CA, April, 1985, pp. 169-175.

28. D. Austin Henderson, Jr. The Trillium User Interface Design Environment. Human Factors in
Computing Systems, Proceedings SIGCHI'86, Boston, MA, April, 1986, pp. 221-227.

29. Ralph D. Hill. "Supporting Concurrency, Communication and Synchronization in Human-Computer
Interaction -The Sassafras UIMS". ACM Transactions on Graphics 5, 3 (July 1986), 179-2 10.

30. Ralph D. Hill, Tom Brinck, John F. Patterson, Steven L. Rohall, and Wayne T. Wilner. "The
Rendezvous Language and Architecture". Comm. ACM 36, 1 (Jan. 1993), 62-67.

31. Ralph D. Hill. The Rendezvous Constraint Maintenance System. ACM SIGGRAPH Symposium on
User Interface Software and Technology, Proceedings UIST'93, Atlanta, GA, Nov., 1993, pp. 225 -234.

32. Deborah Hix. A Procedure for Evaluating Human-Computer Interface Development Tools. ACM
SIGGRAPH Symposium on User Interface Software and Technology, Proceedings UIST'89,
Williamsburg, VA, Nov., 1989, pp. 53-61.

33. Scott E. Hudson and John T. Stasko. Animation Support in a User Interface Toolkit: Flexible,
Robust, and Reusable Abstractions. ACM SIGGRAPH Symposium on User Interface Software and
Technology, Proceedings UIST'93, Atlanta, GA, Nov., 1993, pp. 57-67.

34. Scott E. Hudson. User Interface Specification Using an Enhanced Spreadsheet Model. Tech. Rept.
GIT-GVU-93-20, Georgia Tech Graphics, Visualization and Usability Center, May, 1993.

35. Daniel H.H. Ingalls. "I'he Smalltalk Graphics Kernel". Byte Magazine 6, 8 (Aug. 1981), 168-194.

36. Robert J.K. Jacob. "A Specification Language for Direct Manipulation Interfaces". ACM
Transactions on Graphics 5, 4 (Oct. 1986), 283-317.

37. Jeff A. Johnson, Bonnie A. Nardi, Craig L. Zarmer, and James R. Miller. "ACE: Building Interactive
Graphical Applications". Comm. ACM 36,4 (April 1993), 41-55.

User Interface Software Tools -39

38. Anthony Karrer and Walt Scacchi. Requirements for an Extensible Object-Oriented Tree/Graph
Editor. ACM SIGGRAPH Symposium on User Interface Software and Technology, Proceedings
UIST'90, Snowbird, Utah, Oct., 1990, pp. 84-91.

39. Won Chul Kim and James D. Foley. Providing High-level Control and Expert Assistance in the User
Interface Presentation Design. Human Factors in Computing Systems, Proceedings INTERCHI'93,
Amsterdam, The Netherlands, April, 1993, pp. 430-437.

40. National Instruments. LabVIEW. 12109 Technology Blvd. Austin, Texas, 78727.

41. James A. Landay and Brad A. Myers. Interactive Sketching for the Early Stages of User Aaterface
Design. Tech. Rept. CMU-CS-94-176, Carnegie Mellon University Computer Science Department, July,
1994. Also appears as CMU-HCII-94-104.

42. Mark A. Linton, John M. Vlissides and Paul R. Calder. "Composing user interfaces with
InterViews". IEEE Computer 22, 2 (Feb. 1989), 8-22.

43. MacroMedia. Director. 410 Townsend Suite 408, San Francisco, CA 94107. Phone (415) 442-0200.

44. Joel McCormack and Paul Asente. An Overview of the X Toolkit. ACM SIGGRAPH Symposium
on User Interface Software and Technology, Proceedings UIST'88, Banff, Alberta, Canada, Oct., 1988,
pp. 46-55.

45. Brad A. Myers. "The User Interface for Sapphire". IEEE Computer Graphics and Applications 4, 12
(Dec. 1984), 13-23.

46. Brad A. Myers. "A Complete and Efficient Implementation of Covered Windows". IEEE Computer
19, 9 (Sept. 1986), 57-67.

47. Brad A. Myers. "A Taxonomy of User Interfaces for Window Managers". IEEE Computer Graphics
and Applications 8, 5 (Sept 1988), 65-84.

48. Brad A. Myers. Creating User Interfaces by Demonstration. Academic Press, Boston, 1988.

49. Brad A. Myers. "User Interface Tools: Introduction and Survey". IEEE Software 6, 1 (Jan. 1989),
15-23.

50. Brad A. Myers, Brad Vander Zanden, and Roger B. Dannenberg. Creating Graphical Interactive
Application Objects by Demonstration. ACM SIGGRAPH Symposium on User Interface Software and
Technology, Proceedings UIST'89, Williamsburg, VA, Nov., 1989, pp. 95-104.

51. Brad A. Myers. "A New Model for Hairdling Input". ACM Transactions on Information Systems 8, 3

(July 1990), 289-320.

52. Brad A. Myers. "All the Widgzti". SIGGRAPH Video Review 57 (1990).

53. Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg, Brad Vander Zanden, David S. Kosbie,
Edward Pervin, Andrew Mickish, and Philippe Marchal. "Garnet: Comprehensive Support for Graphical,
Highly-Interactive User Interfaces". IEEE Computer 23, 11 (Nov. 1990), 71-85.

54. Brad A. Myers. "Taxonomies of Visual Programming and Program Visualization". Journal of
Visual Languages and Computing 1, 1 (March 1990), 97-123.

55. Brad A. Myers. Separating Application Code from Toolkits: Eliminating the Spaghetti of Call-
Backs. ACM SIGGRAPH Symposium on User Interface Software and Technology, Proceedings
UIST'91, Hilton Head, SC, Nov., 1991, pp. 211-220.

56. Brad A. Myers. Graphical Techniques in a Spreadsheet for Specifying User Interfaces. Human
Factors in Computing Systems, Proceedings SIGCHI'91, New Orleans, LA, April, 1991, pp. 243-249.

User Interface Software Tools -40

57. Brad A. Myers and Mary Beth Rosson. Survey on User Interface Programming. Human Factors in
Computing Systems, Proceedings SIGCHI'92, Monterey, CA, May, 1992, pp. 195-202.

58. Brad A. Myers (Ed.) Languages for Developing User Interfaces. Jones and Bartlett, Boston, MA,
1992.

59. Brad A. Myers, Dario Giuse, and Brad Vander Zanden. "Declarative Programming in a Prototype-
Instance System: Object-Oriented Programming Without Writing Methods". Sigplan Notices 27, 10
(Oct. 1992), 184-200. ACM Conference on Object-Oriented Programming; Systems Languages and
Applications; OOPSLA'92.

60. Brad A. Myers. "Demonstrational Interfaces: A Step Beyond Direct Manipulation". IEEE Computer
25, 8 (August 1992), 61-73.

61. Brad A. Myers, David Canfield Smith, and Bruce Horn. Report of the 'End-User Programming'
Working Group. In Brad A. Myers, Ed., Languages for Developing User Interfaces, Jones and Bartlett,
Boston, MA, 1992, pp. 343-366.

62. Brad A. Myers and Brad Vander Zanden. "Environment for Rapid Creation of Interactive Design
Tools". The Visual Computer; International Journal of Computer Graphics 8, 2 (Feb. 1992), 94-116.

63. Brad A. Myers, Richard G. McDaniel, and David S. Kosbie. Marquise: Creating Complete User
Interfaces by Demonstration. Human Factors in Computing Systems, Proceedings INTERCHI'93,
Amsterdam, The Netherlands, April, 1993, pp. 293-300.

64. Brad A. Myers. "Challenges of HCI Design and Implementation". ACM Interactions 1, 1 (1994), to
appear.

65. Robert Neches, Jim Foley, Pedro Szekely, Piyawadee Sukaviriya, Ping Luo, Srdjan Kovacevic, and
Scott Hudson. Knowledgable Development Environments Using Shared Design Models. Proceedings of
the 1993 International Workshop on Intelligent User Interfaces, ACM SIGCHI, Orlando, FL, Jan., 1993,
pp. 63-70.

66. Frances J. Newbery. An interface description language for graph editors. 1988 IEEE Workshop on
Visual Languages, Pittsburgh, PA, Oct., 1988, pp. 144-149. IEEE Computer Society Order Number 876.

67. William M. Newman. A System for Interactive Graphical Programming. AFIPS Spring Joint
Computer Conference, 1968, pp. 47-54.
68. NeXT, Inc. NeXTStep and the NeXT Interface Builder. 900 Chesapeake Drive, Redwood City, CA
94063.

69. Jakob Nielsen. "Noncommand User Interfaces". Comm. ACM 36, 4 (April 1993), 83-99.

70. Dan R. Olsen, Jr. and Elizabeth P. Dempsey. Syngraph: A Graphical User Interface Generator.
Computer Graphics, Proceedings SIGGRAPH'83, Detroit, MI, July, 1983, pp. 43-50.

71. Dan R. Olsen, Jr. "Mike: The Menu Interaction Kontrol Environment". ACM Transactions on
Graphics 5, 4 (Oct. 1986), 318-344.

72. Dan R. Olsen, Jr. "Larger Issues in User Interface Management". Computer Graphics 21, 2 (April
1987), 134-137.

73. Dan R. Olsen, Jr. and Bradley W. Halversen. Interface Usage Measurements in a User Interface
Management System. ACM SIGGRAPH Symposium on User Interface Software and Technology,
Proceedings UIST'88, Banff, Alberta, Canada, Oct., 1988, pp. 102-108.

74. Dan R. Olsen, Jr. A Programming Language Basis for User Interface Management. Human Factors
in Computing Systems, Proceedings SIGCHI'89, Austin, TX, April, 1989, pp. 171-176.

User Interface Software Tools -41

75. Dan R. Olsen, Jr. User Interface Management Systems: Models and Algorithms. Morgan Kaufmann,
San Mateo, CA, 1992.

76. Dan R. Olsen Jr., James D. Foley, Scott E. Hudson, James Miller, and Brad Myers. "Research
Directions for User Interface Software Tools". Behaviour and Information Technology 12, 2 (March-
April 1993), 80-97.

77. NeuronData. Open Interface. 156 University Ave. Palo Alto, CA 94301. (415) 321-4488.

78. Silicon Graphics, Inc. Open-GL. 2011 N. Shoreline Blvd. Mountain View, CA 94039-7311. (415)
960-1980.

79. Oracle Tools. Oracle Corporation, 500 Oracle Parkway, Belmont, CA, 94065, (800) 633-0521.

80. John K. Ousterhout. An X1I Toolkit Based on the Tcl Language. Winter, USENIX, 1991, pp.
105-115.

81. Owl International, Inc. Guide. 2800 156th Avenue SE, Second Floor, Bellevue, WA 98007. (206)
747-3203.

82. Andrew J. Palay, et. al. The Andrew Toolkit - An Overview. Proceedings Winter Usenix Technical
Conference, Dallas, Tex, Feb., 1988, pp. 9-21.

83. Randy Pausch, Matthew Conway, and Robert DeLine. "Lesson Learned from SUIT, the Simple User
Interface Toolkit". ACM Transactions on Information Systems 10, 4 (Oct. 1992), 320-344.

84. Tom Gaskins. PEXlib Programming Manual. O'ReiUy and Associates, Inc., 103 Morris Street,
Suite A, Sebastopol CA, 1992.

85. Rob Pike. "Graphics in Overlapping Bitmap Layers". ACM Transactions on Graphics 2, 2 (April
1983), 135-160. Also appears in Computer Graphics: SIGGRAPH'83 Conference Proceedings, Detroit,
Mich. Vol. 17, no. 3, July 25-29, 1983. pp. 331-355..

86. Prior Data Sciences. InterMAPhics. 240 Michael Cowpland Drive, Kanata, Ontario Canada, K2M
1P6. (613) 591-7235.

87. TGSSystems. Prograph. 1127 Barrington SL, Suite 19, Halifax, NS, Canada B3H 2P8. (902)
429-5642.

88. Patricia Russo and Stephen Boor. How Fluent is Your Interface? Designing for International Users.
Human Factors in Computing Systems, Proceedings INTERCHI'93, Amsterdam, The Netherlands, April,
1993, pp. 342-347.

89. Sage Software Inc. Dan Bricklin's Demo II, Version 3.0. 1700 NW 167th Place, Beaverton, OR
97006. Phone (503) 645-1150. A division of InterSolv.

90. Pamela Samuelson. "Legally Speaking: The Ups and Downs of Look and Feel". Comm. ACM 36, 4
(April 1993), 29-35.

91. Robert W. Scheifler and Jim Gettys. "The X Window System". ACM Transactions on Graphics 5, 2
(April 1986), 79-109.

92. Kurt J. Schmucker. "MacApp: An Application Framework". Byte l1, 8 (Aug. 1986), 189-193.

93. Andrew J. Schulert, George T. Rogers, and James A. Hamilton. ADM-A Dialogue Manager. Human
Factors in Computing Systems, Proceedings SIGCHI'85, San Francisco, CA, April, 1985, pp. 177-183.

94. Gurminder Singh and Mark Green. Designing the Interface Designer's Interface. ACM SIGGRAPH
Symposium on User Interface Software and Technology, Proceedings UIST'88, Banff, Alberta, Canada,
Oct., 1988, pp. 109-116.

User Interface Software Tools -42

95. Gurminder Singh and Mark Green. Chisel: A System for Creating Highly Interactive Screen
Layouts. ACM SIGGRAPH Symposium on User Interface Software and Technology, Proceedings
UIST'89, Williamsburg, VA, Nov., 1989, pp. 86-94.

96. SL Corp. Suite 110 Hunt Plaza, 240 Tamal Vista Blvd., Corte Madera, CA, 94925, (415) 927-1724.

97. SmethersBanies. Prototyper 3.0. P.O. Box 639, Potland, Oregon 97207. (503) 274-7179.

98. David Canfield Smith, Charles Irby, Ralph Kimball, Bill Verplank, and Erik Harslem. "Designing
the Star User Interface". Byte 7, 4 (April 1982), 242-282.

99. Spinnaker Software. Spinnaker PLUS. 201 Broadway, Cambridge, MA 02139-1901. (617)
494-1200.

100. Richard M. Staliman. Emacs: The Extensible, Customizable, Self-Documenting Display Editor.
Tech. Rept. 519, MIT Artificial Intelligence Lab, Aug., 1979.

101. Albert Stevens, Bruce Roberts, and Larry Stead. "Te Use of a Sophisticated Graphics Interface in
Computer-Assisted Instruction". IEEE Computer Graphics and Applications 3, 2 (March/April 1983),
25-31.
102. Paul S. Strauss and Rikk Carey. An Object-Oriented 3D Graphics Toolkit. Computer Graphics,

Proceedings SIGGRAPH'92, July, 1992, pp. 341-349.

103. Piyawadee Sukaviriya and James D. Foley. Coupling A UI Framework with Automatic Generation
of Context-Sensitive Animated Help. ACM SIGGRAPH Symposium on User Interface Software and
Technology, Proceedings UIST'90, Snowbird, Utah, Oct., 1990, pp. 152-166.

104. Piyawadee Sukaviriya, James D. Foley and Todd Griffith. A Second Generation User Interface
Design Environment: The Model and The Runtime Architecture. Human Factors in Computing Systems,
Proceedings INTERCHI'93, Amsterdam, The Netherlands, April, 1993, pp. 375-382.

105. Noi Sukaviriya, Srdjan Kovacevic, Jim Foley, Brad Myers, Dan Olsen, Matthias Schneider-
Hufschmidt. Model-Based User Interfaces: What Is It and Why Should I Care? ACM SIGGRAPH
Symposium on User Interface Software and Technology, Proceedings UIST'94, Marina del Rey, CA,
Nov., 1994, pp. (to appear).

106. Sun Microsystems. SunWindows Programmers' Guide. 2550 Garcia Ave., Mm. View, CA 94043.

107. Sun Microsystems. DevGuide: OpenWindows Developer's Guide. 2550 Garcia Ave., Mtn. View,
CA 94043.

108. Ivan E. Sutherland. SketchPad: A Man-Machine Graphical Communication System. AFIPS Spring
Joint Computer Conference, 1963, pp. 329-346.

109. Daniel Swinehart, Polle Zellweger, Richard Beach, and Robert Hagmann. "A Structural View of
the Cedar Programming Environment". ACM Transactions on Programming Languages and Systems 8, 4
(Oct. 1986), 419-490.

110. Pedro Szekely, Ping Luo, and Robert Neches. Beyond Interface Builders: Model-Based Interface
Tools. Human Factors in Computing Systems, Proceedings INTERCHI'93, Amsterdam, The
Netherlands, April, 1993, pp. 383-390.

111. Warren Teitelman. "A Display Oriented Programmer's Assistant". International Journal of Man-
Machine Studies 11 (1979), 157-187. Also Xerox PARC Technical Report CSL-77-3, Palo Alto, CA,
March 8, 1977.

112. Larry Tesler. "The Smalltalk Environment". Byte Magazine 6, 8 (Aug. 1981), 90-147.

User Interface Software Tools - 43

113. V.I. Corp. DataViews. 47 Pleasant St., Northampton, MA, 01006, (413) 586-4144.

114. Brad Vander Zanden and Brad A. Myers. Automatic, Look-and-Feel Independent Dialog Creation
for Graphical User Interfaces. Human Factors in Computing Systems, Proceedings SIGCHI'90, Seattle,
WA, April, 1990, pp. 27-34.

115. Virtual Prototypes Inc. VAPS. 5252 de Maisonneuve West, Suite 318, Montreal, Quebec, Canada
H4A 3S5. (5' W83-4712.

116. Visix are Inc. Galaxy Application Environment. 11440 Commerce Park Drive, Reston VA
22091. (800) 832-8668.

117. Microsoft, Inc. Visual Basic. 10700 Northup Way, Bellevue, Washington 98004. 800-426-9400.

118. Visual Edge Software Ltd. UIMX. 3950 Cote Vertu, Montreal, Quebec H4R 1V4. Phone (514)
332-6430.

119. John M. Vlissides and Mark A. Linton. "Unidraw: A Framework for Building Domain-Specific
Graphical Editors". ACM Transactions on Information Systems 8, 3 (July 1990), 204-236.

120. John M. Vlissides and Steven Tang. A Unidraw-Based User Interface Builder. ACM SIGGRAPH
Symposium on User Interface Software and Technology, Proceedings UIST'91, Hilton Head, SC, Nov.,
1991, pp. 201-210.

121. Josie Werrecke. The Inventor Mentor. Addison-Wesley Publishing Company, Reading, MA, 1994.

122. Charles Wiecha, Stephen Boies, Mark Green, Scott Hudson, and Brad Myers. Direct Manipulation
or Programming: How Should We Design Interfaces? ACM SIGGRAPH Symposium on User Interface
Software and Technology, Proceedings UIST'89, Williamsburg, VA, Nov., 1989, pp. 124-126.

123. Charles Wiecha, William Bennett, Stephen Boies, John Gould, and Sharon Greene. "ITS: A Tool
for Rapidly Developing Interactive Applications". ACM Transactions on Information Systems 8, 3 (July
1990), 204-236.

124. Nicholas Wilde and Clayton Lewis. Spreadsheet-based Interactive Graphics: from Prototype to
Tool. Human Factors in Computing Systems, Proceedings SIGCHI'90, Seattle, WA, April, 1990, pp.
153-159.

125. David Wilson. Programming with MacApp. Addison-Wesley Publishing Company, Reading, MA,
1990.
126. X Business Group, Inc. Interface Development Technology. 3155 Keamey Street, Suite 160,
Fremont, CA 94538. (510) 226-1075,, 1994.

127. XVT Software, Inc. XVT. Box 18750 Boulder, CO 80308. (303) 443-4223.

128. Robert C. Zeleznik, et.al. An Object-Oriented Framework for the Integration of Interactive
Animation Techniques. Computer Graphics, Proceedings SIGGRAPH'91, July, 1991, pp. 105-112.

